PENGARUH PROSES AKTIVASI TERHADAP KINERJA ADSORBEN ORGANIK DARI KULIT BUAH MELON DALAM MENYERAP ION LOGAM Cr(III) DARI LIMBAH CAIR INDUSTRI
Abstract
Logam berat Cr(III) termasuk polutan yang membahayakan kesehatan manusia dan mahkluk biotik lainnya sehingga limbah industri yang mengandung logam tersebut harus melalui proses pengolahan intensif sebelum dialirkan ke pembuangan akhir, salah satunya melalui proses adsorpsi. Dalam penelitian ini dilakukan adsorpsi ion Cr(III) menggunakan adsorbent yang terbuat dari kulit buah melon sehingga bernilai ekonomis tinggi. Perbandingan perlakuan aktivasi yang terdiri dari aktivasi secara kimia menggunakan KOH, H3PO4, NaOH, dan ZnCl2, aktivasi secara fisika melalui karbonisasi pada temperatur yang bervariasi (200, 300, dan 400 °C) dan aktivasi hybrid dianalisa dan dideskripsikan dengan jelas. Selanjutnya, didapatkan beberapa poin utama yaitu adsorbent yang mendapat perlakuan aktivasi ganda menghasilkan nilai efisiensi penurunan konsentrasi polutan yang lebih tinggi dibanding aktivasi tunggal, aktivasi kimia dengan KOH dan H3PO4 bersifat lebih reaktif di banding menggunakan NaOH dan ZnCl2, sedangkan peningkatan temperatur karbonisasi berbanding lurus dengan laju peningkatan nilai efisiensi penyerapan Cr(III).
Full Text:
PDFReferences
Abedi, S., Zavvar Mousavi, H., & Asghari, A. (2016). Investigation of heavy metal ions adsorption by magnetically modified aloe vera leaves ash based on equilibrium, kinetic and thermodynamic studies. Desalination and Water Treatment, 57(29), 13747-13759.
Ahmad, A. L., Sumathi, S., & Hameed, B. H. (2005). Adsorption of residue oil from palm oil mill effluent using powder and flake chitosan: Equilibrium and kinetic studies. Water Research, 39(12), 2483-2494, doi:http://dx.doi.org/10.1016/j.watres.2005.03.035.
Bansal, R. C., & Goyal, M. (2005). Activated carbon adsorption: CRC press.
Basu, M., Guha, A. K., & Ray, L. (2019). Adsorption of Lead on Lentil Husk in Fixed Bed Column Bioreactor. Bioresource Technology, 283, 86-95.
Bhatnagar, A., & Sillanpää, M. (2010). Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review. Chemical Engineering Journal, 157(2), 277-296.
Bhatnagar, A., Sillanpää, M., & Witek-Krowiak, A. (2015). Agricultural waste peels as versatile biomass for water purification – A review. Chemical Engineering Journal, 270, 244-271, doi:10.1016/j.cej.2015.01.135.
Chai, W., Liu, X., Zou, J., Zhang, X., Li, B., & Yin, T. (2015). Pomelo peel modified with acetic anhydride and styrene as new sorbents for removal of oil pollution. Carbohydrate Polymers, 132, 245-251, doi:https://doi.org/10.1016/j.carbpol.2015.06.060.
Coelho, G. F., Gonçalves Jr, A. C., Tarley, C. R. T., Casarin, J., Nacke, H., & Francziskowski, M. A. (2014). Removal of metal ions Cd (II), Pb (II), and Cr (III) from water by the cashew nut shell Anacardium occidentale L. Ecological Engineering, 73, 514-525.
Danish, M., & Ahmad, T. (2018). A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renewable and Sustainable Energy Reviews, 87, 1-21.
Daza, L., Mendioroz, S., & Pajares, J. (1986). Preparation of Rh/active carbon catalysts by adsorption in organic media. Carbon, 24(1), 33-41.
Doshi, B., Sillanpää, M., & Kalliola, S. (2018). A review of bio-based materials for oil spill treatment. Water Research, 135, 262-277, doi:https://doi.org/10.1016/j.watres.2018.02.034.
El-Naas, M. H., Al-Zuhair, S., & Alhaija, M. A. (2010). Reduction of COD in refinery wastewater through adsorption on date-pit activated carbon. Journal of Hazardous Materials, 173(1–3), 750-757, doi:http://dx.doi.org/10.1016/j.jhazmat.2009.09.002.
Feng, N., Guo, X., Liang, S., Zhu, Y., & Liu, J. (2011). Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. Journal of Hazardous Materials, 185(1), 49-54.
Gogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advances in Environmental Research, 8(3–4), 501-551, doi:http://dx.doi.org/10.1016/S1093-0191(03)00032-7.
Ibrahim, S., Ang, H.-M., & Wang, S. (2009). Removal of emulsified food and mineral oils from wastewater using surfactant modified barley straw. Bioresource Technology, 100(23), 5744-5749, doi:http://dx.doi.org/10.1016/j.biortech.2009.06.070.
Ismadji, S., & Bhatia, S. (2001). A modified pore-filling isotherm for liquid-phase adsorption in activated carbon. Langmuir, 17(5), 1488-1498.
Malarvizhi, R., & Ho, Y.-S. (2010). The influence of pH and the structure of the dye molecules on adsorption isotherm modeling using activated carbon. Desalination, 264(1-2), 97-101.
Martini, S., Afroze, S., & Roni, K. A. (2020). Modified eucalyptus bark as a sorbent for simultaneous removal of COD, oil, and Cr (III) from industrial wastewater. Alexandria Engineering Journal.
Nejadshafiee, V., & Islami, M. R. (2019). Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent. Materials Science and Engineering: C, 101, 42-52.
Peng, D., Lan, Z., Guo, C., Yang, C., & Dang, Z. (2013). Application of cellulase for the modification of corn stalk: Leading to oil sorption. Bioresource Technology, 137, 414-418, doi:https://doi.org/10.1016/j.biortech.2013.03.178.
Sadeek, S. A., Negm, N. A., Hefni, H. H., & Wahab, M. M. A. (2015). Metal adsorption by agricultural biosorbents: Adsorption isotherm, kinetic and biosorbents chemical structures. International Journal of Biological Macromolecules, 81, 400-409.
Tseng, R.-L., Wu, F.-C., & Juang, R.-S. (2003). Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons. Carbon, 41(3), 487-495.
Wahi, R., Chuah, L. A., Choong, T. S. Y., Ngaini, Z., & Nourouzi, M. M. (2013). Oil removal from aqueous state by natural fibrous sorbent: an overview. Separation and Purification Technology, 113, 51-63.
Yorgun, S., & Y?ld?z, D. (2015). Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. Journal of the Taiwan Institute of Chemical Engineers, 53, 122-131, doi:https://doi.org/10.1016/j.jtice.2015.02.032.
DOI: https://doi.org/10.32502/jd.v4i2.3224
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Jurnal Distilasi
Jurnal Distilasi is indexed by: