DETEKSI KESEHATAN KEUANGAN PERUSAHAAN DENGAN MENGGUNAKAN MODEL TAFFLER PADA SUB SEKTOR TEKSTIL DAN GARMEN

Chitra Mukti, Andreanov Ridhovan, Alia Sri Damayanti, Wan Variani Permatasari, Rosdiana Rosdiana, Yanuar Ramadhan

Abstract


ABSTRACT

This study aims to detect the financial health of companies that are included in the textile and garment sub-sector and are listed on the Indonesia Stock Exchange (IDX) using the Taffler model using financial report data for the period 2020 - 2022. Through analysis of company financial data in recent years, this study will identify important factors that affect the financial health of companies. The Taffler model will be used to combine financial and other factors in evaluating a company's financial health and identifying potential indicators of bankruptcy. The results of this study are expected to provide a reference for companies in making strategic decisions to maintain financial stability and increase the competitiveness of companies in the textile and garment sub-sector. In this study, the Taffler model predicts that 5 out of 15 companies will go bankrupt in 2023 and 2024.





Keywords


Bankruptcy Prediction, Taffler Models, Textiles and Garments Industry

Full Text:

PDF

References


Adamko, P., & Chutka, J. (2020). Company bankruptcy and its prediction in conditions of globalization. SHS Web of Conferences, 74, 05002. https://doi.org/10.1051/shsconf/20207405002

Akuntansi, J., & Dan, P. (2022). Jurnal akuntansi, perpajakan dan auditing. 3(1).

Altman, E. I., Iwanicz-Drozdowska, M., Laitinen, E. K., & Suvas, A. (2017). Financial Distress Prediction in an International Context: A Review and Empirical Analysis of Altman’s Z-Score Model. Journal of International Financial Management and Accounting, 28(2), 131–171. https://doi.org/10.1111/jifm.12053

ben Jabeur, S., Mefteh-Wali, S., & Carmona, P. (2021). The impact of institutional and macroeconomic conditions on aggregate business bankruptcy. Structural Change and Economic Dynamics, 59, 108–119. https://doi.org/10.1016/j.strueco.2021.08.010

Brown, C., Carballo, J., & Peri, A. (2022). Bankruptcy Shocks and Legal Labor Markets: Evidence from the Court Competition Era. http://arxiv.org/abs/2202.00044

Brydges, T., & Hanlon, M. (2020). Garment worker rights and the fashion industry’s response to COVID-19. In Dialogues in Human Geography (Vol. 10, Issue 2, pp. 195–198). SAGE Publications Ltd. https://doi.org/10.1177/2043820620933851

Campbell, S., Greenwood, M., Prior, S., Shearer, T., Walkem, K., Young, S., Bywaters, D., & Walker, K. (2020). Purposive sampling: complex or simple? Research case examples. Journal of Research in Nursing, 25(8), 652–661. https://doi.org/10.1177/1744987120927206

ElBannan, M. A. (2021). On the prediction of financial distress in emerging markets: What matters more? Empirical evidence from Arab spring countries. Emerging Markets Review, 47. https://doi.org/10.1016/j.ememar.2021.100806

Gunawan, D., & Warninda, T. D. (2022). Prediksi Financial Distress Menggunakan Model Taffler Dan Grover Pada Perusahaan Yang Terdampak Pandemi Covid-19. Jurnal Bisnis, Manajemen, Dan Teknososiopreneur, 1(1), 01–15. https://doi.org/10.31326/bimtek.v1i1.1109

Hájek, P., Ka?ková, E., & Zhunissova, G. (2022). Analysis of competitiveness and economic profit of the confectionary sector in Kazakhstan and its comparison with Czech Republic data. International Food and Agribusiness Management Review, 25(2), 263–291. https://doi.org/10.22434/IFAMR2020.0206

Kisman, Z., & Krisandi, D. (2019). How to Predict Financial Distress in the Wholesale Sector: Lesson from Indonesian Stock Exchange. The Asian Institute of Research Journal of Economics and Business, 2(3), 569–585. https://doi.org/10.31014/aior.1992.02.03.109

Lee, R., & White, D. (2020). AIRA Journal WHAT’S INSIDE Cryptocurrencies & The Dark Web: Insolvency Considerations (Vol. 33). www.aira.orgElectroniccopyavailableat:https://ssrn.com/abstract=3570149

Liu, C., Xia, S., & Lang, C. (2021). Clothing Consumption During the COVID-19 Pandemic: Evidence From Mining Tweets. Clothing and Textiles Research Journal, 39(4), 314–330. https://doi.org/10.1177/0887302X211014973

Motoc, M.-M., & Alexandru, ". (n.d.). A Proposal for a Bankruptcy Risk Detection Model-Adaptation of the Taffler Model.

Richey, R. G., Roath, A. S., Adams, F. G., & Wieland, A. (2022). A Responsiveness View of logistics and supply chain management. Journal of Business Logistics, 43(1), 62–91. https://doi.org/10.1111/jbl.12290

Rizkiansyah, A., & Falikhatun, F. (2021). The indications level of bankruptcy by Altman Z-Score calculation method (case study on subsidiaries of PT Kereta Api Indonesia Persero). Management and Entrepreneurship: Trends of Development, 1(15), 89–97. https://doi.org/10.26661/2522-1566/2021-1/15-06

Syed Nor, S. H., Ismail, S., & Yap, B. W. (2019). Personal bankruptcy prediction using decision tree model. Journal of Economics, Finance and Administrative Science, 24(47), 157–170. https://doi.org/10.1108/JEFAS-08-2018-0076

Vavrek, R., Vozárová, I. K., & Kotuli?, R. (2021). Evaluating the financial health of agricultural enterprises in the conditions of the slovak republic using bankruptcy models. Agriculture (Switzerland), 11(3). https://doi.org/10.3390/agriculture11030242

Widiasmara, A., & Rahayu, H. C. (2019). Perbedaan model ohlson, model taffler dan model springate dalam memprediksi financial distress. In inventory : Jurnal Akuntansi (Vol. 3, Issue 2). www.tribunnews.com

Yuli Soesetio. (2023). Good Corporate Governance Mechanisms and Financial Performance in Controlling Financial Distress. ADPEBI International Journal of Business and Social Science, 3(1), 14–26. https://doi.org/10.54099/aijbs.v3i1.542

Yusnita Mahardini, N. (2023). Choosing Ratio In The Financial Distress Prediction Model. Journal of Namibian Studies, 34, 1213–1232.




DOI: https://doi.org/10.32502/jab.v8i2.6282

Refbacks

  • There are currently no refbacks.


Program Studi Akuntansi Fakultas Ekonomi dan Bisnis, Universitas Muhammadiyah Palembang

Jl. Jenderal A. Yani 13 Ulu, Seberang Ulu II, Palembang (30263), Indonesia.

Indexed by :